Tuesday 27 November 2012

Animal Divesityy Web

Diversity The Class Mammalia includes about 5000 species placed in 26 orders. Systematists do not yet agree on the exact number or on how some orders and families are related to others. The Animal Diversity Web generally follows the arrangement used by Wilson and Reeder (2005). Exciting new information, however, coming from phylogenies based on molecular evidence and from new fossils, is changing our understanding of many groups. For example, skunks have been placed in the new family Mephitidae, separate from their traditional place within the Mustelidae (Dragoo and Honeycutt 1997, Flynn et al., 2005). The Animal Diversity Web follows this revised classification. Whales almost certainly arose from within the Artiodactyla (Matthee et al. 2001; Gingerich et al. 2001). The traditional subdivision of the Chiroptera into megabats and microbats may not accurately reflect evolutionary history (Teeling et al. 2002). Even more fundamentally, molecular evidence suggests that monotremes (Prototheria, egg-laying mammals) and marsupials (Metatheria) may be more closely related to each other than to placental mammals (Eutheria) (Janke et al. 1997), and placental mammals may be organized into larger groups (Afrotheria, Laurasiatheria, Boreoeutheria, etc.) that are quite different from traditional ones (Murphy et al. 2001). (Dragoo and Honeycutt, 1997; Flynn, et al., 2005; Gingerich, et al., 2001; Janke, et al., 1997; Matthee, et al., 2001; Murphy, et al., 2001; Nowak, 1991; Teeling, et al., 2002; Vaughan, et al., 2000; Wilson and Reeder, 1993) All mammals share at least three characteristics not found in other animals: 3 middle ear bones, hair, and the production of milk by modified sweat glands called mammary glands. The three middle ear bones, the malleus, incus, and stapes (more commonly referred to as the hammer, anvil, and stirrup) function in the transmission of vibrations from the tympanic membrane (eardrum) to the inner ear. The malleus and incus are derived from bones present in the lower jaw of mammalian ancestors. Mammalian hair is present in all mammals at some point in their development. Hair has several functions, including insulation, color patterning, and aiding in the sense of touch. All female mammals produce milk from their mammary glands in order to nourish newborn offspring. Thus, female mammals invest a great deal of energy caring for each of their offspring, a situation which has important ramifications in many aspects of mammalian evolution, ecology, and behavior. (Klima and Maier, 1990; Vaughan, et al., 2000) Physical Description All mammals have hair at some point during their development, and most mammals have hair their entire lives. Adults of some species lose most or all of their hair but, even in mammals like whales and dolphins, hair is present at least during some phase of ontogeny. Mammalian hair, made of a protein called keratin, serves at least four functions. First, it slows the exchange of heat with the environment (insulation). Second, specialized hairs (whiskers or "vibrissae") have a sensory function, letting an animal know when it is in contact with an object in its environment. Vibrissae are often richly innervated and well-supplied with muscles that control their position. Third, hair affects appearance through its color and pattern. It may serve to camouflage predators or prey, to warn predators of a defensive mechanism (for example, the conspicuous color pattern of a skunk is a warning to predators), or to communicate social information (for example, threats, such as the erect hair on the back of a wolf; sex, such as the different colors of male and female capuchin monkeys; or the presence of danger, such as the white underside of the tail of a white-tailed deer). Fourth, hair provides some protection, either simply by providing an additional protective layer (against abrasion or sunburn, for example) or by taking on the form of dangerous spines that deter predators (porcupines, spiny rats, others). (Klima and Maier, 1990; Vaughan, et al., 2000)

No comments:

Post a Comment